Introduction to Probability for Computing

Table of Contents

Introduction to Probability for Computing

  1. preface-and-contents
  2. before-we-start-some-mathematical-basics
  3. probability-on-events
  4. common-discrete-random-variables
  5. expectation
  6. variance-higher-moments-and-random-sums
  7. z-transforms
  8. continuous-random-variables-single-distribution
  9. continuous-random-variables-joint-distributions
  10. normal-distribution
  11. heavy-tails-the-distributions-of-computing
  12. laplace-transforms
  13. the-poisson-process
  14. generating-random-variables-for-simulation
  15. event-driven-simulation
  16. estimators-for-mean-and-variance
  17. classical-statistical-inference
  18. bayesian-statistical-inference
  19. tail-bounds
  20. applications-of-tail-bounds-confidence-intervals-balls-and-bins
  21. hashing-algorithms
  22. las-vegas-randomized-algorithms
  23. monte-carlo-randomized-algorithms
  24. primality-testing
  25. discrete-time-markov-chains-finite-state
  26. ergodicity-for-finite-state-discrete-time-markov-chains
  27. discrete-time-markov-chains-infinite-state
  28. a-little-bit-of-queueing-theory