Introduction to Probability for Computing
Table of Contents
Introduction to Probability for Computing
Introduction to Probability for Computing
preface-and-contents
before-we-start-some-mathematical-basics
probability-on-events
common-discrete-random-variables
expectation
variance-higher-moments-and-random-sums
z-transforms
continuous-random-variables-single-distribution
continuous-random-variables-joint-distributions
normal-distribution
heavy-tails-the-distributions-of-computing
laplace-transforms
the-poisson-process
generating-random-variables-for-simulation
event-driven-simulation
estimators-for-mean-and-variance
classical-statistical-inference
bayesian-statistical-inference
tail-bounds
applications-of-tail-bounds-confidence-intervals-balls-and-bins
hashing-algorithms
las-vegas-randomized-algorithms
monte-carlo-randomized-algorithms
primality-testing
discrete-time-markov-chains-finite-state
ergodicity-for-finite-state-discrete-time-markov-chains
discrete-time-markov-chains-infinite-state
a-little-bit-of-queueing-theory