Machine Learning

Table of Contents

Machine Learning

  1. introduction
  2. linear-regression-and-gradient-descent
  3. locally-weighted-and-logicistic-regression
  4. perceptron–generalized-linear-model
  5. gda–naive-bayes
  6. support-vector-machines
  7. kernels
  8. data-splits-models–cross-validation
  9. approximation-estimation-error–erm
  10. decision-trees-and-ensemble-methods
  11. introduction-to-neural-networks
  12. back-propagation-and-improving-neural-networks
  13. debugging-ml-models-and-error-analysis
  14. expectation-maximization-algorithms
  15. em-algorithm–factor-analysis
  16. independent-component-analysis-and-reinforcement-learning
  17. mdps–valuepolicy-iteration
  18. mdps–model-simulation
  19. reward-model-and-linear-dynamical-system
  20. debugging-and-diagnostics