Machine Learning
Table of Contents
Machine Learning
Machine Learning
introduction
linear-regression-and-gradient-descent
locally-weighted-and-logicistic-regression
perceptron–generalized-linear-model
gda–naive-bayes
support-vector-machines
kernels
data-splits-models–cross-validation
approximation-estimation-error–erm
decision-trees-and-ensemble-methods
introduction-to-neural-networks
back-propagation-and-improving-neural-networks
debugging-ml-models-and-error-analysis
expectation-maximization-algorithms
em-algorithm–factor-analysis
independent-component-analysis-and-reinforcement-learning
mdps–valuepolicy-iteration
mdps–model-simulation
reward-model-and-linear-dynamical-system
debugging-and-diagnostics