Many of these descriptions and examples are taken from various resources (see Acknowledgements section) and summarized in my own words.
C++11 includes the following new language features: - move semantics - variadic templates - rvalue references - forwarding references - initializer lists - static assertions - auto - lambda expressions - decltype - type aliases - nullptr - strongly-typed enums - attributes - constexpr - delegating constructors - user-defined literals - explicit virtual overrides - final specifier - default functions - deleted functions - range-based for loops - special member functions for move semantics - converting constructors - explicit conversion functions - inline-namespaces - non-static data member initializers - right angle brackets - ref-qualified member functions - trailing return types - noexcept specifier - char32_t and char16_t - raw string literals
C++11 includes the following new library features: - std::move - std::forward - std::thread - std::to_string - type traits - smart pointers - std::chrono - tuples - std::tie - std::array - unordered containers - std::make_shared - std::ref - memory model - std::async - std::begin/end
Moving an object means to transfer ownership of some resource it manages to another object.
The first benefit of move semantics is performance optimization. When
an object is about to reach the end of its lifetime, either because it’s
a temporary or by explicitly calling std::move
, a move is
often a cheaper way to transfer resources. For example, moving a
std::vector
is just copying some pointers and internal
state over to the new vector – copying would involve having to copy
every single contained element in the vector, which is expensive and
unnecessary if the old vector will soon be destroyed.
Moves also make it possible for non-copyable types such as
std::unique_ptr
s (smart
pointers) to guarantee at the language level that there is only ever
one instance of a resource being managed at a time, while being able to
transfer an instance between scopes.
See the sections on: rvalue
references, special member
functions for move semantics, std::move
, std::forward
, forwarding references
.
C++11 introduces a new reference termed the rvalue
reference. An rvalue reference to T
, which is a
non-template type parameter (such as int
, or a user-defined
type), is created with the syntax T&&
. Rvalue
references only bind to rvalues.
Type deduction with lvalues and rvalues:
int x = 0; // `x` is an lvalue of type `int`
int& xl = x; // `xl` is an lvalue of type `int&`
int&& xr = x; // compiler error -- `x` is an lvalue
int&& xr2 = 0; // `xr2` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`
void f(int& x) {}
void f(int&& x) {}
(x); // calls f(int&)
f(xl); // calls f(int&)
f(3); // calls f(int&&)
f(std::move(x)); // calls f(int&&)
f
(xr2); // calls f(int&)
f(std::move(xr2)); // calls f(int&& x) f
See also: std::move
, std::forward
, forwarding references
.
Also known (unofficially) as universal references. A
forwarding reference is created with the syntax T&&
where T
is a template type parameter, or using
auto&&
. This enables perfect forwarding:
the ability to pass arguments while maintaining their value category
(e.g. lvalues stay as lvalues, temporaries are forwarded as
rvalues).
Forwarding references allow a reference to bind to either an lvalue
or rvalue depending on the type. Forwarding references follow the rules
of reference collapsing: * T& &
becomes
T&
* T& &&
becomes
T&
* T&& &
becomes
T&
* T&& &&
becomes
T&&
auto
type deduction with lvalues and rvalues:
int x = 0; // `x` is an lvalue of type `int`
auto&& al = x; // `al` is an lvalue of type `int&` -- binds to the lvalue, `x`
auto&& ar = 0; // `ar` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`
Template type parameter deduction with lvalues and rvalues:
// Since C++14 or later:
void f(auto&& t) {
// ...
}
// Since C++11 or later:
template <typename T>
void f(T&& t) {
// ...
}
int x = 0;
(0); // T is int, deduces as f(int &&) => f(int&&)
f(x); // T is int&, deduces as f(int& &&) => f(int&)
f
int& y = x;
(y); // T is int&, deduces as f(int& &&) => f(int&)
f
int&& z = 0; // NOTE: `z` is an lvalue with type `int&&`.
(z); // T is int&, deduces as f(int& &&) => f(int&)
f(std::move(z)); // T is int, deduces as f(int &&) => f(int&&) f
See also: std::move
, std::forward
, rvalue references
.
The ...
syntax creates a parameter pack or
expands one. A template parameter pack is a template parameter
that accepts zero or more template arguments (non-types, types, or
templates). A template with at least one parameter pack is called a
variadic template.
template <typename... T>
struct arity {
constexpr static int value = sizeof...(T);
};
static_assert(arity<>::value == 0);
static_assert(arity<char, short, int>::value == 3);
An interesting use for this is creating an initializer list from a parameter pack in order to iterate over variadic function arguments.
template <typename First, typename... Args>
auto sum(const First first, const Args... args) -> decltype(first) {
const auto values = {first, args...};
return std::accumulate(values.begin(), values.end(), First{0});
}
(1, 2, 3, 4, 5); // 15
sum(1, 2, 3); // 6
sum(1.5, 2.0, 3.7); // 7.2 sum
A lightweight array-like container of elements created using a
“braced list” syntax. For example, { 1, 2, 3 }
creates a
sequences of integers, that has type
std::initializer_list<int>
. Useful as a replacement
to passing a vector of objects to a function.
int sum(const std::initializer_list<int>& list) {
int total = 0;
for (auto& e : list) {
+= e;
total }
return total;
}
auto list = {1, 2, 3};
(list); // == 6
sum({1, 2, 3}); // == 6
sum({}); // == 0 sum
Assertions that are evaluated at compile-time.
constexpr int x = 0;
constexpr int y = 1;
static_assert(x == y, "x != y");
auto
-typed variables are deduced by the compiler
according to the type of their initializer.
auto a = 3.14; // double
auto b = 1; // int
auto& c = b; // int&
auto d = { 0 }; // std::initializer_list<int>
auto&& e = 1; // int&&
auto&& f = b; // int&
auto g = new auto(123); // int*
const auto h = 1; // const int
auto i = 1, j = 2, k = 3; // int, int, int
auto l = 1, m = true, n = 1.61; // error -- `l` deduced to be int, `m` is bool
auto o; // error -- `o` requires initializer
Extremely useful for readability, especially for complicated types:
std::vector<int> v = ...;
std::vector<int>::const_iterator cit = v.cbegin();
// vs.
auto cit = v.cbegin();
Functions can also deduce the return type using auto
. In
C++11, a return type must be specified either explicitly, or using
decltype
like so:
template <typename X, typename Y>
auto add(X x, Y y) -> decltype(x + y) {
return x + y;
}
(1, 2); // == 3
add(1, 2.0); // == 3.0
add(1.5, 1.5); // == 3.0 add
The trailing return type in the above example is the declared
type (see section on decltype
)
of the expression x + y
. For example, if x
is
an integer and y
is a double, decltype(x + y)
is a double. Therefore, the above function will deduce the type
depending on what type the expression x + y
yields. Notice
that the trailing return type has access to its parameters, and
this
when appropriate.
A lambda
is an unnamed function object capable of
capturing variables in scope. It features: a capture list; an
optional set of parameters with an optional trailing return type; and a
body. Examples of capture lists: * []
- captures nothing. *
[=]
- capture local objects (local variables, parameters)
in scope by value. * [&]
- capture local objects (local
variables, parameters) in scope by reference. * [this]
-
capture this
by reference. * [a, &b]
-
capture objects a
by value, b
by
reference.
int x = 1;
auto getX = [=] { return x; };
(); // == 1
getX
auto addX = [=](int y) { return x + y; };
(1); // == 2
addX
auto getXRef = [&]() -> int& { return x; };
(); // int& to `x` getXRef
By default, value-captures cannot be modified inside the lambda
because the compiler-generated method is marked as const
.
The mutable
keyword allows modifying captured variables.
The keyword is placed after the parameter-list (which must be present
even if it is empty).
int x = 1;
auto f1 = [&x] { x = 2; }; // OK: x is a reference and modifies the original
auto f2 = [x] { x = 2; }; // ERROR: the lambda can only perform const-operations on the captured value
// vs.
auto f3 = [x]() mutable { x = 2; }; // OK: the lambda can perform any operations on the captured value
decltype
is an operator which returns the declared
type of an expression passed to it. cv-qualifiers and references
are maintained if they are part of the expression. Examples of
decltype
:
int a = 1; // `a` is declared as type `int`
decltype(a) b = a; // `decltype(a)` is `int`
const int& c = a; // `c` is declared as type `const int&`
decltype(c) d = a; // `decltype(c)` is `const int&`
decltype(123) e = 123; // `decltype(123)` is `int`
int&& f = 1; // `f` is declared as type `int&&`
decltype(f) g = 1; // `decltype(f) is `int&&`
decltype((a)) h = g; // `decltype((a))` is int&
template <typename X, typename Y>
auto add(X x, Y y) -> decltype(x + y) {
return x + y;
}
(1, 2.0); // `decltype(x + y)` => `decltype(3.0)` => `double` add
See also: decltype(auto) (C++14)
.
Semantically similar to using a typedef
however, type
aliases with using
are easier to read and are compatible
with templates.
template <typename T>
using Vec = std::vector<T>;
<int> v; // std::vector<int>
Vec
using String = std::string;
{"foo"}; String s
C++11 introduces a new null pointer type designed to replace C’s
NULL
macro. nullptr
itself is of type
std::nullptr_t
and can be implicitly converted into pointer
types, and unlike NULL
, not convertible to integral types
except bool
.
void foo(int);
void foo(char*);
(NULL); // error -- ambiguous
foo(nullptr); // calls foo(char*) foo
Type-safe enums that solve a variety of problems with C-style enums including: implicit conversions, inability to specify the underlying type, scope pollution.
// Specifying underlying type as `unsigned int`
enum class Color : unsigned int { Red = 0xff0000, Green = 0xff00, Blue = 0xff };
// `Red`/`Green` in `Alert` don't conflict with `Color`
enum class Alert : bool { Red, Green };
= Color::Red; Color c
Attributes provide a universal syntax over
__attribute__(...)
, __declspec
, etc.
// `noreturn` attribute indicates `f` doesn't return.
[[ noreturn ]] void f() {
throw "error";
}
Constant expressions are expressions evaluated by the compiler at
compile-time. Only non-complex computations can be carried out in a
constant expression. Use the constexpr
specifier to
indicate the variable, function, etc. is a constant expression.
constexpr int square(int x) {
return x * x;
}
int square2(int x) {
return x * x;
}
int a = square(2); // mov DWORD PTR [rbp-4], 4
int b = square2(2); // mov edi, 2
// call square2(int)
// mov DWORD PTR [rbp-8], eax
constexpr
values are those that the compiler can
evaluate at compile-time:
const int x = 123;
constexpr const int& y = x; // error -- constexpr variable `y` must be initialized by a constant expression
Constant expressions with classes:
struct Complex {
constexpr Complex(double r, double i) : re{r}, im{i} { }
constexpr double real() { return re; }
constexpr double imag() { return im; }
private:
double re;
double im;
};
constexpr Complex I(0, 1);
Constructors can now call other constructors in the same class using an initializer list.
struct Foo {
int foo;
(int foo) : foo{foo} {}
Foo() : Foo(0) {}
Foo};
;
Foo foo.foo; // == 0 foo
User-defined literals allow you to extend the language and add your
own syntax. To create a literal, define a
T operator "" X(...) { ... }
function that returns a type
T
, with a name X
. Note that the name of this
function defines the name of the literal. Any literal names not starting
with an underscore are reserved and won’t be invoked. There are rules on
what parameters a user-defined literal function should accept, according
to what type the literal is called on.
Converting Celsius to Fahrenheit:
// `unsigned long long` parameter required for integer literal.
long long operator "" _celsius(unsigned long long tempCelsius) {
return std::llround(tempCelsius * 1.8 + 32);
}
24_celsius; // == 75
String to integer conversion:
// `const char*` and `std::size_t` required as parameters.
int operator "" _int(const char* str, std::size_t) {
return std::stoi(str);
}
"123"_int; // == 123, with type `int`
Specifies that a virtual function overrides another virtual function. If the virtual function does not override a parent’s virtual function, throws a compiler error.
struct A {
virtual void foo();
void bar();
};
struct B : A {
void foo() override; // correct -- B::foo overrides A::foo
void bar() override; // error -- A::bar is not virtual
void baz() override; // error -- B::baz does not override A::baz
};
Specifies that a virtual function cannot be overridden in a derived class or that a class cannot be inherited from.
struct A {
virtual void foo();
};
struct B : A {
virtual void foo() final;
};
struct C : B {
virtual void foo(); // error -- declaration of 'foo' overrides a 'final' function
};
Class cannot be inherited from.
struct A final {};
struct B : A {}; // error -- base 'A' is marked 'final'
A more elegant, efficient way to provide a default implementation of a function, such as a constructor.
struct A {
() = default;
A(int x) : x{x} {}
Aint x {1};
};
; // a.x == 1
A a{123}; // a.x == 123 A a2
With inheritance:
struct B {
() : x{1} {}
Bint x;
};
struct C : B {
// Calls B::B
() = default;
C};
; // c.x == 1 C c
A more elegant, efficient way to provide a deleted implementation of a function. Useful for preventing copies on objects.
class A {
int x;
public:
(int x) : x{x} {};
A(const A&) = delete;
A& operator=(const A&) = delete;
A};
{123};
A x = x; // error -- call to deleted copy constructor
A y = x; // error -- operator= deleted y
Syntactic sugar for iterating over a container’s elements.
std::array<int, 5> a {1, 2, 3, 4, 5};
for (int& x : a) x *= 2;
// a == { 2, 4, 6, 8, 10 }
Note the difference when using int
as opposed to
int&
:
std::array<int, 5> a {1, 2, 3, 4, 5};
for (int x : a) x *= 2;
// a == { 1, 2, 3, 4, 5 }
The copy constructor and copy assignment operator are called when copies are made, and with C++11’s introduction of move semantics, there is now a move constructor and move assignment operator for moves.
struct A {
std::string s;
() : s{"test"} {}
A(const A& o) : s{o.s} {}
A(A&& o) : s{std::move(o.s)} {}
A& operator=(A&& o) {
A= std::move(o.s);
s return *this;
}
};
(A a) {
A freturn a;
}
= f(A{}); // move-constructed from rvalue temporary
A a1 = std::move(a1); // move-constructed using std::move
A a2 = A{};
A a3 = std::move(a3); // move-assignment using std::move
a2 = f(A{}); // move-assignment from rvalue temporary a1
Converting constructors will convert values of braced list syntax into constructor arguments.
struct A {
(int) {}
A(int, int) {}
A(int, int, int) {}
A};
{0, 0}; // calls A::A(int, int)
A a (0, 0); // calls A::A(int, int)
A b= {0, 0}; // calls A::A(int, int)
A c {0, 0, 0}; // calls A::A(int, int, int) A d
Note that the braced list syntax does not allow narrowing:
struct A {
(int) {}
A};
(1.1); // OK
A a{1.1}; // Error narrowing conversion from double to int A b
Note that if a constructor accepts a
std::initializer_list
, it will be called instead:
struct A {
(int) {}
A(int, int) {}
A(int, int, int) {}
A(std::initializer_list<int>) {}
A};
{0, 0}; // calls A::A(std::initializer_list<int>)
A a (0, 0); // calls A::A(int, int)
A b= {0, 0}; // calls A::A(std::initializer_list<int>)
A c {0, 0, 0}; // calls A::A(std::initializer_list<int>) A d
Conversion functions can now be made explicit using the
explicit
specifier.
struct A {
operator bool() const { return true; }
};
struct B {
explicit operator bool() const { return true; }
};
;
A aif (a); // OK calls A::operator bool()
bool ba = a; // OK copy-initialization selects A::operator bool()
;
B bif (b); // OK calls B::operator bool()
bool bb = b; // error copy-initialization does not consider B::operator bool()
All members of an inline namespace are treated as if they were part of its parent namespace, allowing specialization of functions and easing the process of versioning. This is a transitive property, if A contains B, which in turn contains C and both B and C are inline namespaces, C’s members can be used as if they were on A.
namespace Program {
namespace Version1 {
int getVersion() { return 1; }
bool isFirstVersion() { return true; }
}
inline namespace Version2 {
int getVersion() { return 2; }
}
}
int version {Program::getVersion()}; // Uses getVersion() from Version2
int oldVersion {Program::Version1::getVersion()}; // Uses getVersion() from Version1
bool firstVersion {Program::isFirstVersion()}; // Does not compile when Version2 is added
Allows non-static data members to be initialized where they are declared, potentially cleaning up constructors of default initializations.
// Default initialization prior to C++11
class Human {
() : age{0} {}
Humanprivate:
unsigned age;
};
// Default initialization on C++11
class Human {
private:
unsigned age {0};
};
C++11 is now able to infer when a series of right angle brackets is used as an operator or as a closing statement of typedef, without having to add whitespace.
typedef std::map<int, std::map <int, std::map <int, int> > > cpp98LongTypedef;
typedef std::map<int, std::map <int, std::map <int, int>>> cpp11LongTypedef;
Member functions can now be qualified depending on whether
*this
is an lvalue or rvalue reference.
struct Bar {
// ...
};
struct Foo {
() & { return bar; }
Bar getBar() const& { return bar; }
Bar getBar() && { return std::move(bar); }
Bar getBarprivate:
;
Bar bar};
{};
Foo foo= foo.getBar(); // calls `Bar getBar() &`
Bar bar
const Foo foo2{};
= foo2.getBar(); // calls `Bar Foo::getBar() const&`
Bar bar2
{}.getBar(); // calls `Bar Foo::getBar() &&`
Foostd::move(foo).getBar(); // calls `Bar Foo::getBar() &&`
std::move(foo2).getBar(); // calls `Bar Foo::getBar() const&&`
C++11 allows functions and lambdas an alternative syntax for specifying their return types.
int f() {
return 123;
}
// vs.
auto f() -> int {
return 123;
}
auto g = []() -> int {
return 123;
};
This feature is especially useful when certain return types cannot be resolved:
// NOTE: This does not compile!
template <typename T, typename U>
decltype(a + b) add(T a, U b) {
return a + b;
}
// Trailing return types allows this:
template <typename T, typename U>
auto add(T a, U b) -> decltype(a + b) {
return a + b;
}
In C++14, decltype(auto) (C++14)
can be used instead.
The noexcept
specifier specifies whether a function
could throw exceptions. It is an improved version of
throw()
.
void func1() noexcept; // does not throw
void func2() noexcept(true); // does not throw
void func3() throw(); // does not throw
void func4() noexcept(false); // may throw
Non-throwing functions are permitted to call potentially-throwing functions. Whenever an exception is thrown and the search for a handler encounters the outermost block of a non-throwing function, the function std::terminate is called.
extern void f(); // potentially-throwing
void g() noexcept {
(); // valid, even if f throws
fthrow 42; // valid, effectively a call to std::terminate
}
Provides standard types for representing UTF-8 strings.
char32_t utf8_str[] = U"\u0123";
char16_t utf8_str[] = u"\u0123";
C++11 introduces a new way to declare string literals as “raw string literals”. Characters issued from an escape sequence (tabs, line feeds, single backslashes, etc.) can be inputted raw while preserving formatting. This is useful, for example, to write literary text, which might contain a lot of quotes or special formatting. This can make your string literals easier to read and maintain.
A raw string literal is declared using the following syntax:
R"delimiter(raw_characters)delimiter"
where: * delimiter
is an optional sequence of characters
made of any source character except parentheses, backslashes and spaces.
* raw_characters
is any raw character sequence; must not
contain the closing sequence ")delimiter"
.
Example:
// msg1 and msg2 are equivalent.
const char* msg1 = "\nHello,\n\tworld!\n";
const char* msg2 = R"(
Hello,
world!
)";
std::move
indicates that the object passed to it may
have its resources transferred. Using objects that have been moved from
should be used with care, as they can be left in an unspecified state
(see: What
can I do with a moved-from object?).
A definition of std::move
(performing a move is nothing
more than casting to an rvalue reference):
template <typename T>
typename remove_reference<T>::type&& move(T&& arg) {
return static_cast<typename remove_reference<T>::type&&>(arg);
}
Transferring std::unique_ptr
s:
std::unique_ptr<int> p1 {new int{0}}; // in practice, use std::make_unique
std::unique_ptr<int> p2 = p1; // error -- cannot copy unique pointers
std::unique_ptr<int> p3 = std::move(p1); // move `p1` into `p3`
// now unsafe to dereference object held by `p1`
Returns the arguments passed to it while maintaining their value
category and cv-qualifiers. Useful for generic code and factories. Used
in conjunction with forwarding references
.
A definition of std::forward
:
template <typename T>
&& forward(typename remove_reference<T>::type& arg) {
Treturn static_cast<T&&>(arg);
}
An example of a function wrapper
which just forwards
other A
objects to a new A
object’s copy or
move constructor:
struct A {
() = default;
A(const A& o) { std::cout << "copied" << std::endl; }
A(A&& o) { std::cout << "moved" << std::endl; }
A};
template <typename T>
(T&& arg) {
A wrapperreturn A{std::forward<T>(arg)};
}
(A{}); // moved
wrapper;
A a(a); // copied
wrapper(std::move(a)); // moved wrapper
See also: forwarding references
, rvalue references
.
The std::thread
library provides a standard way to
control threads, such as spawning and killing them. In the example
below, multiple threads are spawned to do different calculations and
then the program waits for all of them to finish.
void foo(bool clause) { /* do something... */ }
std::vector<std::thread> threadsVector;
.emplace_back([]() {
threadsVector// Lambda function that will be invoked
});
.emplace_back(foo, true); // thread will run foo(true)
threadsVectorfor (auto& thread : threadsVector) {
.join(); // Wait for threads to finish
thread}
Converts a numeric argument to a std::string
.
std::to_string(1.2); // == "1.2"
std::to_string(123); // == "123"
Type traits defines a compile-time template-based interface to query or modify the properties of types.
static_assert(std::is_integral<int>::value);
static_assert(std::is_same<int, int>::value);
static_assert(std::is_same<std::conditional<true, int, double>::type, int>::value);
C++11 introduces new smart pointers: std::unique_ptr
,
std::shared_ptr
, std::weak_ptr
.
std::auto_ptr
now becomes deprecated and then eventually
removed in C++17.
std::unique_ptr
is a non-copyable, movable pointer that
manages its own heap-allocated memory. Note: Prefer using the
std::make_X
helper functions as opposed to using
constructors. See the sections for std::make_unique
and std::make_shared.
std::unique_ptr<Foo> p1 { new Foo{} }; // `p1` owns `Foo`
if (p1) {
->bar();
p1}
{
std::unique_ptr<Foo> p2 {std::move(p1)}; // Now `p2` owns `Foo`
(*p2);
f
= std::move(p2); // Ownership returns to `p1` -- `p2` gets destroyed
p1 }
if (p1) {
->bar();
p1}
// `Foo` instance is destroyed when `p1` goes out of scope
A std::shared_ptr
is a smart pointer that manages a
resource that is shared across multiple owners. A shared pointer holds a
control block which has a few components such as the managed
object and a reference counter. All control block access is thread-safe,
however, manipulating the managed object itself is not
thread-safe.
void foo(std::shared_ptr<T> t) {
// Do something with `t`...
}
void bar(std::shared_ptr<T> t) {
// Do something with `t`...
}
void baz(std::shared_ptr<T> t) {
// Do something with `t`...
}
std::shared_ptr<T> p1 {new T{}};
// Perhaps these take place in another threads?
(p1);
foo(p1);
bar(p1); baz
The chrono library contains a set of utility functions and types that deal with durations, clocks, and time points. One use case of this library is benchmarking code:
std::chrono::time_point<std::chrono::steady_clock> start, end;
= std::chrono::steady_clock::now();
start // Some computations...
= std::chrono::steady_clock::now();
end
std::chrono::duration<double> elapsed_seconds = end - start;
double t = elapsed_seconds.count(); // t number of seconds, represented as a `double`
Tuples are a fixed-size collection of heterogeneous values. Access
the elements of a std::tuple
by unpacking using std::tie
, or using
std::get
.
// `playerProfile` has type `std::tuple<int, const char*, const char*>`.
auto playerProfile = std::make_tuple(51, "Frans Nielsen", "NYI");
std::get<0>(playerProfile); // 51
std::get<1>(playerProfile); // "Frans Nielsen"
std::get<2>(playerProfile); // "NYI"
Creates a tuple of lvalue references. Useful for unpacking
std::pair
and std::tuple
objects. Use
std::ignore
as a placeholder for ignored values. In C++17,
structured bindings should be used instead.
// With tuples...
std::string playerName;
std::tie(std::ignore, playerName, std::ignore) = std::make_tuple(91, "John Tavares", "NYI");
// With pairs...
std::string yes, no;
std::tie(yes, no) = std::make_pair("yes", "no");
std::array
is a container built on top of a C-style
array. Supports common container operations such as sorting.
std::array<int, 3> a = {2, 1, 3};
std::sort(a.begin(), a.end()); // a == { 1, 2, 3 }
for (int& x : a) x *= 2; // a == { 2, 4, 6 }
These containers maintain average constant-time complexity for
search, insert, and remove operations. In order to achieve constant-time
complexity, sacrifices order for speed by hashing elements into buckets.
There are four unordered containers: * unordered_set
*
unordered_multiset
* unordered_map
*
unordered_multimap
std::ref(val)
is used to create object of type
std::reference_wrapper
that holds reference of val. Used in
cases when usual reference passing using &
does not
compile or &
is dropped due to type deduction.
std::cref
is similar but created reference wrapper holds a
const reference to val.
// create a container to store reference of objects.
auto val = 99;
auto _ref = std::ref(val);
++;
_refauto _cref = std::cref(val);
//_cref++; does not compile
std::vector<std::reference_wrapper<int>>vec; // vector<int&>vec does not compile
.push_back(_ref); // vec.push_back(&i) does not compile
vec<< val << endl; // prints 100
cout << vec[0] << endl; // prints 100
cout << _cref; // prints 100 cout
C++11 introduces a memory model for C++, which means library support for threading and atomic operations. Some of these operations include (but aren’t limited to) atomic loads/stores, compare-and-swap, atomic flags, promises, futures, locks, and condition variables.
See the sections on: std::thread
std::async
runs the given function either asynchronously
or lazily-evaluated, then returns a std::future
which holds
the result of that function call.
The first parameter is the policy which can be: 1.
std::launch::async | std::launch::deferred
It is up to the
implementation whether to perform asynchronous execution or lazy
evaluation. 1. std::launch::async
Run the callable object
on a new thread. 1. std::launch::deferred
Perform lazy
evaluation on the current thread.
int foo() {
/* Do something here, then return the result. */
return 1000;
}
auto handle = std::async(std::launch::async, foo); // create an async task
auto result = handle.get(); // wait for the result
std::begin
and std::end
free functions were
added to return begin and end iterators of a container generically.
These functions also work with raw arrays which do not have
begin
and end
member functions.
template <typename T>
int CountTwos(const T& container) {
return std::count_if(std::begin(container), std::end(container), [](int item) {
return item == 2;
});
}
std::vector<int> vec = {2, 2, 43, 435, 4543, 534};
int arr[8] = {2, 43, 45, 435, 32, 32, 32, 32};
auto a = CountTwos(vec); // 2
auto b = CountTwos(arr); // 1
See: https://github.com/AnthonyCalandra/modern-cpp-features/graphs/contributors
MIT