Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Sort the array, and then iterate through the array – for every iteration, have three pointers, where you fix a number, and then select a number smaller and larger than it. For each iteration, you can binary search for a better possibility that matches.
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
= []
res = len(nums)
n = sorted(nums)
nums for i in range(n-2):
if i > 0 and nums[i] == nums[i-1]:
continue
= i+1
j = n-1
k = -nums[i]
new_target while j < k:
= nums[j] + nums[k]
summ if summ < new_target:
+= 1
j elif summ > new_target:
-= 1
k else:
res.append([nums[i], nums[j], nums[k]])while j < k and nums[j+1] == nums[j]:
+= 1
j += 1
j while k > j and nums[k-1] == nums[k]:
-= 1
k -= 1
k return res