Variables |
\(x_1\), \(y_{0..N}\) \(z_{3,4}\) |
$x_1$, $z_{3,4}$ |
Square |
\(x_1\), \(z_{3,4}\) |
$a^2$, $$x^y$, $2^{n-1}$ |
Square Root |
\(\sqrt{9}\), \(\sqrt{x}\) |
$\sqrt{9}$, $\sqrt{x}$ |
Logarithm |
\(\log{}x\), \(\log_{2}x\) |
$\log{}x$, $\log_{2}x$ |
Limits |
\(\lim_{x\to \infty}\) |
$\lim_{x\to \infty}$ |
Fraction |
\(\frac{1}{2}\), \(\left(-\frac{1}{2}\right)^n\) |
$\frac{1}{2}$, $\left(-\frac{1}{2}\right)^n$ |
Infinity |
\(\infty\) |
$infty$ |
Real numbers, Integers, Natural numbers, Rational numbers,
Irrational numbers |
\(\Bbb R\), \(\Bbb Z\), \(\Bbb
N\), \(\Bbb Q\), \(\Bbb P\) |
$\Bbb R$, $\Bbb Z$, $\Bbb N$, $\Bbb Q$, $\Bbb P$ |
Absolute Value |
\(\vert{x}\vert\), \(\vert\frac{x}{2}\vert\), \(\lfloor{x}\rfloor\), \(\lceil{x}\rceil\) |
$\vert{x}\vert$, $\vert\frac{x}{2}\vert$, $\lfloor{x}\rfloor$, $\lceil{x}\rceil$ |
Arithmetic |
\(4 + 3\), \(3 - 3\), \(3\times 3\), \(3\div 3\) |
$4 + 3$, $3 - 3$, $3\times 3$, $3\div 3$ |
Factorial |
\(n!\) |
$n!$ |
Trigonometric functions |
\(\sin\theta\), \(\cos\theta\), \(\tan\theta\) |
$\sin\theta$, $\cos\theta$, $\tan\theta$ |
Greater or Less |
\(a\gt b\), \(a\geq b\), \(a\lt
b\), \(a\leq b\) |
$a\gt b$, $a\geq b$, $a\lt b$, $a\leq b$ |
Much Less Than, Much Greater Than |
\(a \ll b\), \(b \gg a\) |
$a \ll b$, $b \gg a$ |
Equation |
\(a=b\), \(a\neq b\), \(a\approx b\) |
$a=b$, $a\neq b$, $a\approx b$ |
Times Dot |
\(a\cdot b=ab\) |
$a\cdot b=ab$ |
Divide Fraction |
\(a/b=\frac{a}{b}\) |
$a/b=\frac{a}{b}$ |
Trinomial Equation |
\(a^2 + b^2 = c^2\) |
$a^2 + b^2 = c^2$ |
Matrix Parentheses |
\[\begin{pmatrix} a & b \\ c & d
\end{pmatrix}\] |
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ |
Matrix Brackets |
\[\begin{bmatrix} a & b \\ c & d
\end{bmatrix}\] |
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ |
Matrix Equation |
\[\begin{vmatrix} a & b \\ c & d
\end{vmatrix}=ad-bc\] |
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc$$ |
Set |
\(x\in A\), \(A\ni x\), \(x\notin A\) |
$x\in A$, $A\ni x$, $x\notin A$ |
Subset |
\(A\subset B\), \(A\subseteq B\), \(A \not \subset B\) |
$A\subset B$, $A\subseteq B$, $A \not \subset B$ |
Intersection & Union |
\(A\cap B\), \(A\cup B\), \(\overline{A}\) |
$A\cap B$, $A\cup B$, $\overline{A}$ |
Logical Operators |
\[ \forall X, \wedge X, \vee X, \neg X,
\exists A, A \implies B \] |
$$ \forall X, \wedge X, \vee X, \neg X, \exists A A \implies B $$ |
Quadratic Formula |
\(x = {-b \pm \sqrt{b^2-4ac} \over
2a}\) |
$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$ |
Binomial |
\(\sqrt{3x-1}+(1+x)^2\) |
$\sqrt{3x-1}+(1+x)^2$ |
Differentiation |
\(f'\), \(f^{(n)}\), \(D_x
f\) |
$f'$, $f^{(n)}$, $D_x f$ |
Integral |
\(\int_0^1 f(x) dx\) |
$\int_0^1 f(x) dx$ |
Sigma |
\(\displaystyle \sum_{i=1}^k\) |
$\displaystyle \sum_{i=1}^k$ |
Integral Large |
\(\displaystyle \int_{-\infty
}^{\infty}f(x)dx\) |
$\displaystyle \int_{-\infty }^{\infty}f(x)dx$ |
Max Sample |
\[\max(a,b)=\begin{cases}a&(a\geqq
b)\\b&(a\lt b)\end{cases}\] |
$$\max(a,b)=\begin{cases}a&(a\geqq b)\\b&(a\lt b)\end{cases}$$ |
Piecewise Equations |
\[f(n) = \begin{cases} n/2, &
\text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd}
\end{cases}\] |
$$f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases}$$ |
Tables |
\[\begin{array}{c |
lcr} n & \text{Left} & \text{Center} & \text{Right} \\
\hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8
\\ 3 & -20 & 2000 & 1+10i \end{array}\] |
$$\begin{array}{c | lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array}$$ |
Set Comprehensions |
\(\{x \text{ if $x$ is even} \mid
x^2\in\Bbb Z\}\) |
$\{x \text{ if $x$ is even} \mid x^2\in\Bbb Z\}$ |